Pre-class Warm-up!!!

Suppose that A is an $m \times n$ matrix (m rows, n columns) and that $\mathrm{Ax}=0$ has a unique solution. Which of the following statements is sometimes false?
a. The columns of A are linearly independent.
b. The columns of A span a space of dimension n.
c. The columns of A are a basis for the space they span.
d. $\mathrm{m} \leq \mathrm{n}$

Pre-class Warm-up!!!
Which of the following are subspaces of the vector space of all functions $R->R$?
a. The set of all functions f such that $f^{\prime}(1)=0$.
$\sqrt{ }$ Yes No
b. The set of all functions f such that $f^{\prime}(1)=1$.
Yes No $\quad(f+g)^{\prime}(1)=1+1=2$
c. The set of all functions f such that $f(x) \geq 0$ for all x. If $f(x)>0$ then Yes No J $((-1) f)(x)<0$ so -f is not in the set.

To check if $U \subseteq V$ (a vector space)
is a subspace we check

1. If $u, v \in U$ then $u f v \in U$
z. If $u \in U, a \in \mathbb{R}$ then $a u \in U$,

We check: if f, g are functions with $f^{\prime}(1)=0, g^{\prime}(1)=0$ then $(f+g)^{\prime}(1)=0$ anal $(a f)^{\prime}(c)=0$
Note $(f+g)^{\prime}=f^{\prime}+g^{\prime}$

Section 4.7: General vector spaces
We study:

- vector spaces of matrices
- Vector spaces of functions
- Vector spaces of polynomials
- Solution spaces to homogeneous differential equations

We identify subspaces and find bases in some cases. A more systematic treatment of independence of functions is given in Section 5.1.

You will not be tested on: the justification that the algorithm to find partial fraction decompositions works, in Example 5.

Matrices 3×2 matrices form vector space $2\left[\begin{array}{ll}1 & 2 \\ 3 & 6 \\ 5 & 6\end{array}\right]-3\left[\begin{array}{cc}0 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]=a(3 \times 2)$ matrix
Let $M _\{m, n\}$ denote the set of $m \times n$ matrices. This is a vector space.
$\left.\begin{array}{l}\text { It has basis the matrices } E_{_}\{i, j\} . \Sigma_{i \rightarrow}\left[\begin{array}{ll}0 & 0 \\ & 1 \\ \text { Every matrix is a linear combination }\end{array}\right] \\ 0\end{array}\right]$ The trace of a matrix: of the $E_{i j}$

$$
\text { e.g. }\left[\begin{array}{ll}
1 & 2 \\
34
\end{array}\right]=1 E_{11}+2 E_{12}+3 E_{21}+4 E_{22}
$$

If $A=\left(a_{i j}\right)$ is a square $n \times n$-mainix then trace $A=a_{11}+a_{22}+\cdots+a_{n n}$ so the sum of entrieson the leading diaconal $\operatorname{trace}\left(2\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]-\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right)=\operatorname{trace}\left[\begin{array}{ll}1 & 3 \\ 6 & 7\end{array}\right]=1+7=8$ $=2 \operatorname{trace}\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]-\operatorname{trace}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ $=2 \cdot 5-2=8$

Question like Section 4.7, 1-4.
Which of the following are subspaces of $M _\{3,3\}$? \quad trace $(A+B)=\operatorname{trace} A+$ trace 3 $=0+0=0$
a. Matrices of trace 0 . Yes
b. Matrices of trace 5. Yes No $/$
C. Matrices of determinant 1.
d. Upper triangular matrices. Yes \checkmark No

Not a subspace: $\operatorname{det}\left(\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$

$$
\left[\begin{array}{lll}
x & * & * \\
0 & * & x \\
0 & 0 & *
\end{array}\right]+\left[\begin{array}{lll}
\square & \square & \square \\
0 & 0 & \square \\
0 & 0 & D
\end{array}\right]=\left[\begin{array}{lll}
0 & \ddots & \vdots \\
0 & 0
\end{array}\right]
$$

$$
a\left[\begin{array}{cc}
- & \cdots \\
0 & \cdots \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
i & - \\
0 & i \\
0 & 0
\end{array}\right]
$$

Polynomials
Example (like example 4 from Section 4.4 and Example 6 in Section 4.7):
Let $V{ }^{\circ}{ }^{\circ} \mathrm{P}$ the set of polynomials

$$
a_{0}+a_{6} x+a_{2} x^{2}+a_{3} x^{3}
$$

(a) Show that V has dimension 4.
(b) Show that $1,1+x, x+x^{\wedge} 2, x^{\wedge} 2+x^{\wedge} 3$ is a basis for V.
a. We show: $1, x, x^{2}, x^{3}$ is
a basis for V
They span: $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$

$$
=a_{0} 1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

They are independent:

$$
\begin{aligned}
& a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}=0 \\
& \Leftrightarrow a_{0}=a_{1}=a_{2}=a_{3}
\end{aligned}
$$

becance two pdynomnals are equal \Leftrightarrow all their coefficients are the same.

Polynomials

In the book, P_n denotes the set of all polynomials of degree $\leq n$. It is a space of dimension $n+1$.

Questions like Section 4.7, 9-12.
Which of the following are subspaces of P_5 ?
a. The polynomials $p(x)$ with $a _2=0$.

b. The polynomials $p(x)$ with $a _2=1$.

Yes

Like Section 4.7 questions 13-16 as well as questions in 5.1. In 5.1 we learn a different approach to testing if functions are independent.

Which of the following sets of functions are independent?
a. $e^{\wedge} x$ and $\sin x$
b. $\ln x$ and $\ln \left(x^{\wedge} 2\right)$
c. $\cos x+2 \sin x$ and $2 \cos x+\sin x$.
d. $e^{\wedge} x, \sin x$ and 1 .

Two vectors are dependent \Leftrightarrow ore is a scalar multiple of the other.
a. Is e^{x} a scalar multiple of $\sin x$? No, They are independent
b. Note $\ln \left(x^{2}\right)=2 \ln x$ so $\ln \left(x^{2}\right), \ln x$ are dependent
c. They are independent
d. We show there are inclependent If $a e^{x}+b \sin x+c=0 \quad \forall x$ then for values x_{2}, x_{2}, x_{3} of x the vectors $\left[\begin{array}{l}e^{x_{1}} \\ e^{x_{2}} \\ e^{x_{3}}\end{array}\right]\left[\begin{array}{l}\sin x_{1} \\ \sin x_{2} \\ \sin x_{3}\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \begin{aligned} & \text { are } \\ & \text { dependent }\end{aligned}$
Take $x_{1}=0, x_{2}=\pi / 2, x_{3}=\pi$ $\left[\begin{array}{l}1 \\ e^{\pi / 2} \\ e^{\pi}\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ are independent.
Therefore the functions ave independent

Like Section 4.7 question 25:
Find a basis for the solution space of $y^{\prime \prime}+3 y^{\prime}=0$.

Question:

Do the following matrices form a basis for $M_{-}\{2,2\}$?
a. $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$

Yes
No
b. What about $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$?

Yes

No

